Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.514
Filtrar
1.
Sci Rep ; 14(1): 9483, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664520

RESUMO

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Assuntos
Alcaloides , Benzodioxóis , Proteínas de Choque Térmico HSP90 , Hiperglicemia , Simulação de Acoplamento Molecular , Piperidinas , Poli(ADP-Ribose) Polimerase-1 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alcamidas Poli-Insaturadas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Piperidinas/farmacologia , Piperidinas/química , Benzodioxóis/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/administração & dosagem , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Aloxano , Ratos , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Nanopartículas/química , Dano ao DNA/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 3513-3536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623081

RESUMO

Purpose: Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods: Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results: The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion: Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.


Assuntos
Oftalmopatias , Imidazóis , Lipossomos , Piperazinas , Humanos , Lipossomos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Microfluídica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/farmacologia , Apoptose
3.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589357

RESUMO

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Assuntos
Lesões por Radiação , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Intestinos , Trato Gastrointestinal/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Células-Tronco/metabolismo , Apoptose/genética
4.
Cell Rep ; 43(4): 114104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602872

RESUMO

Clinical evidence has revealed that high-level activation of NRF2 caused by somatic mutations in NRF2 (NFE2L2) is frequently detected in esophageal squamous cell carcinoma (ESCC), whereas that caused by somatic mutations in KEAP1, a negative regulator of NRF2, is not. Here, we aspire to generate a mouse model of NRF2-activated ESCC using the cancer-derived NRF2L30F mutation and cancer driver mutant TRP53R172H. Concomitant expression of NRF2L30F and TRP53R172H results in formation of NRF2-activated ESCC-like lesions. In contrast, while squamous-cell-specific deletion of KEAP1 induces similar NRF2 hyperactivation, the loss of KEAP1 combined with expression of TRP53R172H does not elicit the formation of ESCC-like lesions. Instead, KEAP1-deleted cells disappear from the esophageal epithelium over time. These findings demonstrate that, while cellular NRF2 levels are similarly induced, NRF2 gain of function and KEAP1 loss of function elicits distinct fates of squamous cells. The NRF2L30F mutant mouse model developed here will be instrumental in elucidating the mechanistic basis leading to NRF2-activated ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Mutação com Ganho de Função , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Mutação com Perda de Função
5.
Cells ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667315

RESUMO

Cervical cancer is a major cause of death in women despite the advancement of current treatment modalities. The conventional therapeutic agent, cisplatin (CCDP), is the standard treatment for CC; however, resistance often develops due to the cancer's heterogeneity. Therefore, a detailed elucidation of the specific molecular mechanisms driving CC is crucial for the development of targeted therapeutic strategies. Retinoblastoma binding protein 6 (RBBP6) is a potential biomarker associated with cell proliferation and is upregulated in cervical cancer sites, exhibiting apoptosis and dysregulated p53 expression. Furthermore, RBBP6 has been demonstrated to sensitize cancer cells to radiation and certain chemotherapeutic agents by regulating the Bcl-2 gene, thus suggesting a crosstalk among RBBP6/p53/BCL-2 oncogenic signatures. The present study, therefore, investigated the relationship between cisplatin and RBBP6 expression in CC cells. Herein, we first explored bioinformatics simulations and identified that the RBBP6/p53/BCL-2 signaling pathway is overexpressed and correlated with CC. For further analysis, we explored the Genomics of Drug Sensitivity in Cancer (GDSC) and found that most of the CC cell lines are sensitive to CCDP. To validate these findings, RBBP6 was silenced in HeLa and Vero cells using RNAi technology, followed by measurement of wild-type p53 and Bcl-2 at the mRNA level using qPCR. Cells co-treated with cisplatin and siRBBP6 were subsequently analyzed for apoptosis induction and real-time growth monitoring using flow cytometry and the xCELLigence system, respectively. Cancer cells in the co-treatment group showed a reduction in apoptosis compared to the cisplatin-treated group. Moreover, the real-time growth monitoring revealed a reduced growth rate in RBBP6 knockdown cells treated with cisplatin. Although wild-type p53 remained unchanged in the co-treatment group of cancer cells, Bcl-2 was completely repressed, suggesting that RBBP6 is necessary for sensitizing cervical cancer cells to cisplatin treatment by downregulating Bcl-2. The Vero cell population, which served as a non-cancerous control cell line in this study, remained viable following treatment with both siRBBP6 and cisplatin. Findings from this study suggest that RBBP6 expression promotes cisplatin sensitivity in HeLa cells through Bcl-2 downregulation. Knockdown of RBBP6 limits apoptosis induction and delays cell growth inhibition in response to cisplatin. The knowledge obtained here has the potential to help improve cisplatin efficacy through personalized administration based on the expression profile of RBBP6 among individual patients.


Assuntos
Cisplatino , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , Neoplasias do Colo do Útero , Humanos , Cisplatino/farmacologia , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Técnicas de Silenciamento de Genes , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células HeLa
6.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667326

RESUMO

Precancerous cells in the oral cavity may appear as oral potentially malignant disorders, but they may also present as dysplasia without visual manifestation in tumor-adjacent tissue. As it is currently not possible to prevent the malignant transformation of these oral precancers, new treatments are urgently awaited. Here, we generated precancer culture models using a previously established method for the generation of oral keratinocyte cultures and incorporated CRISPR/Cas9 editing. The generated cell lines were used to investigate the efficacy of a set of small molecule inhibitors. Tumor-adjacent mucosa and oral leukoplakia biopsies were cultured and genetically characterized. Mutations were introduced in CDKN2A and TP53 using CRISPR/Cas9 and combined with the ectopic activation of telomerase to generate cell lines with prolonged proliferation. The method was tested in normal oral keratinocytes and tumor-adjacent biopsies and subsequently applied to a large set of oral leukoplakia biopsies. Finally, a subset of the immortalized cell lines was used to assess the efficacy of a set of small molecule inhibitors. Culturing and genomic engineering was highly efficient for normal and tumor-adjacent oral keratinocytes, but success rates in oral leukoplakia were remarkably low. Knock-out of CDKN2A in combination with either the activation of telomerase or knock-out of TP53 seemed a prerequisite for immortalization. Prolonged culturing was accompanied by additional genetic aberrations in these cultures. The generated cell lines were more sensitive than normal keratinocytes to small molecule inhibitors of previously identified targets. In conclusion, while very effective for normal keratinocytes and tumor-adjacent biopsies, the success rate of oral leukoplakia cell culturing methods was very low. Genomic engineering enabled the prolonged culturing of OL-derived keratinocytes but was associated with acquired genetic changes. Further studies are required to assess to what extent the immortalized cultures faithfully represent characteristics of the cells in vivo.


Assuntos
Queratinócitos , Leucoplasia Oral , Neoplasias Bucais , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Leucoplasia Oral/genética , Leucoplasia Oral/patologia , Telomerase/genética , Telomerase/metabolismo , Engenharia Genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Sistemas CRISPR-Cas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Mucosa Bucal/patologia , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/genética
7.
Mol Biol Rep ; 51(1): 513, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622345

RESUMO

BACKGROUND: In recent years, anti-angiogenic peptides have received considerable attention as candidates for cancer treatment. Arresten is an angiogenesis inhibitor that cleaves from the α1 chain of type IV collagen and stimulates apoptosis in endothelial cells. We have recently indicated that a peptide corresponding to the amino acid 78 to 86 of arresten, so-called Ars, prevented the migration and tube formation of HUVECs and the colon carcinoma growth in mice significantly. The current study aimed to determine whether induction of apoptotic cell death in endothelial cells is one of the biochemical mechanisms of this anti-angiogenic peptide. METHODS AND RESULTS: This hypothesis was assessed using the MTT assay, cell cycle analysis, Annexin V-FITC/PI staining, BCL2, CASP8, CASP9, p53, and CDKN2A gene expression studies as well as evaluating apoptosis in tumor tissues by TUNEL assay. Results demonstrated that 40 µM of Ars significantly stimulated 46.2% of early and late apoptosis in HUVECs compared to 13.6% in the untreated cells and did not significantly alter the cell cycle distribution. Moreover, BCL2 and CASP8 were down-regulated, while CASP9 and p53 were up-regulated in endothelial cells. CDKN2A gene expression, the regulator of G1 cell cycle arrest, was not significantly altered. CONCLUSIONS: It might be suggested that Ars induced apoptosis in endothelial cells through the mitochondrial pathway and had no effect on the cell cycle. Besides, Ars induced apoptosis significantly in vivo. However, further studies are required to confirm the detailed molecular mechanism of Ars, this peptide has the potential to be optimized for clinical translations.


Assuntos
Células Endoteliais , Proteína Supressora de Tumor p53 , Camundongos , Animais , Células Endoteliais/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
8.
Eur J Med Chem ; 270: 116366, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581730

RESUMO

Inhibition of MDM2/p53 interaction with small-molecule inhibitors stabilizes p53 from MDM2 mediated degradation, which is a promising strategy for the treatment of cancer. In this report, a novel series of 4-imidazolidinone-containing compounds have been synthesized and tested in MDM2/p53 and MDM4/p53 FP binding assays. Upon SAR studies, compounds 2 (TB114) and 22 were identified as the most potent inhibitors of MDM2/p53 but not MDM4/p53 interactions. Both 2 and 22 exhibited strong antiproliferative activities in HCT-116 and MOLM-13 cell lines harboring wild type p53. Mechanistic studies show that 2 and 22 dose-dependently activated p53 and its target genes and induced apoptosis in cells based on the Western blot, qPCR, and flow cytometry assays. In addition, the antiproliferative activities of 2 and 22 were dependent on wild type p53, while they were not toxic to HEK-293 kidney cells. Furthermore, the on-target activities of 2 were general and applicable to other cancer cell lines with wild type p53. These attributes make 2 a good candidate for future optimization to discover a potential treatment of wild-type p53 cancer.


Assuntos
Antineoplásicos , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Células HEK293 , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Eur J Med Chem ; 270: 116367, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581732

RESUMO

Breast cancer is one of the most common female malignant tumors, with triple-negative breast cancer (TNBC) being the most specific, highly invasive, metastatic and associated with a poor prognosis. Our previous study showed that the natural product ganoderic acid A (GAA) has a certain affinity for MDM2. In this study, two series of novel GAA PROTACs C1-C10 and V1-V10 were designed and synthesized for the treatment of breast cancer. The antitumor activity of these compounds was evaluated against four human tumor cell lines (MCF-7, MDA-MB-231, SJSA-1, and HepG2). Among them, V9 and V10 showed stronger anti-proliferative effects against breast cancer cells, and V10 showed the best selectivity in MDA-MB-231 cells (TNBC), which was 5-fold higher than that of the lead compound GAA. Preliminary structure-activity analysis revealed that V-series GAA PROTACs had better effects than C-series, and the introduction of 2O-4O PEG linkers could significantly improve the antitumor activity. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and Western blot researches showed that both V9 and V10 could bind with MDM2, and degrade the protein through the ubiquitin-proteasome system. Molecular dynamics simulation (MD) revealed that V10 is a bifunctional molecule that can bind to von Hippel-Lindau (VHL) at one end and target MDM2 at the other. In addition, V10 promoted the upregulation of p21 in p53-mutant MDA-MB-231 cells, and induced apoptosis via down-regulation of the bcl-2/bax ratio and the expression of cyclin B1. Finally, in vivo experiments showed that, V10 also exhibited good tumor inhibitory activity in xenografted TNBC zebrafish models, with an inhibition rate of 27.2% at 50 µg/mL. In conclusion, our results suggested that V10 has anti-tumor effects on p53-mutant breast cancer in vitro and in vivo, and may be used as a novel lead compound for the future development of TNBC.


Assuntos
Ácidos Heptanoicos , Lanosterol/análogos & derivados , Proteínas Proto-Oncogênicas c-mdm2 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
10.
Nat Commun ; 15(1): 2821, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561401

RESUMO

Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.


Assuntos
60634 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequências Reguladoras de Ácido Nucleico , DNA , Cromatina/genética
11.
Tunis Med ; 102(2): 111-115, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38567478

RESUMO

INTRODUCTION: The p53 gene mutation is one of the most common genetic alterations in many cancers. In prostate cancer (PCa), it has been associated with a poor prognosis, tumor progression and aggressiveness. P53 mutation induces an abnormal protein expression in related tissues. AIM: This study aimed to assess p53 expression using immunohistochemistry in PCa and to discuss its prognostic value. METHODS: We have retrospectively collected all cases of PCa diagnosed in our pathology department between 2012 and 2022. An automatized immunohistochemical analysis was performed using monoclonal p53 antibody. For each case, we assessed the proportion of positive cells and the intensity of staining. P53 expression was considered abnormal when it was totally negative or overexpressed (>=50% of positive cells). RESULTS: Twenty-four cases have been selected. Abnormal p53 expression was found in 42% of cases (P53 was overexpressed in 6cases and totally negative in 4 cases). Mean age of patients with p53 abnormal expression was 70years old. Patients with p53 abnormal expression had Gleason score >7 in 5 cases, ISUP grade >2 in 3 cases, peri-neural invasion in 8cases, capsule invasion in 9cases. All patients with p53 overexpression developed androgen resistance (p<0.01). CONCLUSION: An aberrant expression profile of the p53 protein was observed in 42% of cases, and a statistically significant association was found with androgen resistance. Our results suggest a potential prognostic role of p53 in PCa.


Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Masculino , Humanos , Idoso , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Prognóstico , Androgênios , Estudos Retrospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
12.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567911

RESUMO

The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.


Assuntos
Neoplasias Bucais , Compostos Policíclicos , Sirtuína 1 , Humanos , Animais , Camundongos , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , NAD/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Apoptose , Neoplasias Bucais/tratamento farmacológico
13.
BMJ Open Respir Res ; 11(1)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569671

RESUMO

BACKGROUND: Asthma is a chronic disease affecting the lower respiratory tract, which can lead to death in severe cases. The cause of asthma is not fully known, so exploring its potential mechanism is necessary for the targeted therapy of asthma. METHOD: Asthma mouse model was established with ovalbumin (OVA). H&E staining, immunohistochemistry and ELISA were used to detect the inflammatory response in asthma. Transcriptome sequencing was performed to screen differentially expressed genes (DEGs). The role of KIF23 silencing in cell viability, proliferation and apoptosis was explored by cell counting kit-8, EdU assay and flow cytometry. Effects of KIF23 knockdown on inflammation, oxidative stress and pyroptosis were detected by ELISA and western blot. After screening KIF23-related signalling pathways, the effect of KIF23 on p53 signalling pathway was explored by western blot. RESULTS: In the asthma model, the levels of caspase-3, IgG in serum and inflammatory factors (interleukin (IL)-1ß, KC and tumour necrosis factor (TNF)-α) in serum and bronchoalveolar lavage fluid were increased. Transcriptome sequencing showed that there were 352 DEGs in the asthma model, and 7 hub genes including KIF23 were identified. Knockdown of KIF23 increased cell proliferation and inhibited apoptosis, inflammation and pyroptosis of BEAS-2B cells induced by IL-13 in vitro. In vivo experiments verified that knockdown of KIF23 inhibited oxidative stress, inflammation and pyroptosis to alleviate OVA-induced asthma mice. In addition, p53 signalling pathway was suppressed by KIF23 knockdown. CONCLUSION: Knockdown of KIF23 alleviated the progression of asthma by suppressing pyroptosis and inhibited p53 signalling pathway.


Assuntos
Asma , Pulmão , Animais , Humanos , Camundongos , Asma/genética , Asma/patologia , Inflamação/genética , Pulmão/patologia , Proteínas Associadas aos Microtúbulos/efeitos adversos , Proteínas Associadas aos Microtúbulos/metabolismo , Piroptose , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/efeitos adversos , Proteína Supressora de Tumor p53/metabolismo
14.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583875

RESUMO

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Proteína Supressora de Tumor p53/metabolismo , Hipertermia Induzida/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Reparo do DNA , Apoptose , Estresse Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
15.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587072

RESUMO

The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.


Assuntos
Células Endoteliais , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Ratos , Envelhecimento , Células Endoteliais/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Sci Rep ; 14(1): 7997, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580756

RESUMO

Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose/genética , Carcinoma Hepatocelular/genética , Dano ao DNA , Neoplasias Hepáticas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
17.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581065

RESUMO

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cofator PQQ/farmacologia , Insuficiência Ovariana Primária/patologia , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Sci Rep ; 14(1): 9305, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653804

RESUMO

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , 60611 , Carioferinas , Linfoma Cutâneo de Células T , Receptores Citoplasmáticos e Nucleares , Triazóis , Proteína Supressora de Tumor p53 , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/genética , Apoptose/efeitos dos fármacos , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Carioferinas/metabolismo , Carioferinas/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Triazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
19.
Nat Commun ; 15(1): 3440, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653977

RESUMO

Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Fatores de Transcrição , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Fatores de Transcrição NFATC/metabolismo , Glucose Oxidase/metabolismo , Animais
20.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426258

RESUMO

Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.


Assuntos
Splicing de RNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Baixo/genética , Splicing de RNA/genética , Processamento Alternativo/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA